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Abstract. Perturbation theory is applied to improve the accuracy of a numerical integration 
method for the Schrodinger equation. The resulting method is applied to the special case of 
the perturbed oscillator problem in order to obtain energy perturbation coefficients for the 
case in which the x 2  term is taken as the perturbation. 

1. Introduction 

The energy levels of the perturbed harmonic oscillator Hamiltonian 

H ( ~ ,  A )  = - D ~ + ~ x ~ + A X ~  (1) 

have been most studied for the case ,U = 1, M = 4. This particular case has been treated 
by the WKB method (Bender and Wu 1968), by Pad6 approximant methods (Loeffel et 
a1 1969, Simon 1970), by the intermediate Hamiltonian method (Bazley and Fox 
1961), by Heisenberg matrix mechanics (Chasman 1961), and by variational methods 
(Schwartz 1965, Reid 1970, Truhlar 1971). The Hamiltonian (1) with p = 1, M = 6 or 8 
has been treated by the WKB method (Banks and Bender 1972), by Borel-Pad6 
summation techniques (Graffi et a1 1971), by a recurrence relation method (Biswas et a1 
1973), and by a simple power series method (Secrest et a1 1962). In fact, the last 
method gives the best results for M = 6 or 8 without the lengthy calculations which are 
needed for the matrix-variational approach or the Pad6 approximant approach. That 
the Rayleigh-Schrodinger perturbation series in powers of A for any eigenvalue E(p7 A )  
of the Hamiltonian (1) will diverge for M > 2 was noted by Frank (1967) on general 
grounds. Although a Pad6 approximant summation of the A perturbation series 
succeeds for M = 4  and M = 6 ,  it does not do so for M = 8 ,  since the even- and 
odd-order Pad6 approximant sequences for the energy series do not have a common 
limit (Graffi and Grecchi 1978). A modified Borel-Pad6 method will work -for M = 8 
(Graffi et a1 1971), but is not a very practical method for calculatingE(p, A ) ,  since even 
a A value of lop3 (with p = 1) counts as ‘large’ for that method. Most of the methods 
referred to above need double-precision computation because they involve calculating 
many matrix elements or perturbation coeficients; Biswas et a1 (1973) noted that their 
method involved a prohibitive amount of computer time for M = 8, so that some of their 
quoted eigenvalues had converged to only two decimal places. 

In the present work we exploit the fact that the Hamiltonian (1) can be treated very 
effectively if the px2 term is treated as the perturbation, with A held fixed at the value 
A = 1. Simon (1970) actually used this point of view in his formal considerations, but 
then treated A as the perturbation parameter in the numerical portion of his paper, 
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where he studied high-order Pad6 approximants based on the A series. If we set A = 1, 
and apply the usual theorems about regular perturbations, as summarised by Simon 
(1970), we conclude that the perturbation series in p for the eigenvalue E ( p ,  1) will be a 
convergent one (for p sufficiently small). For the case M = 4  Simon (1970) gives a 
scaling argument, which we can easily modify to apply to other M values. It leads to the 
relation 

(2) 

where the integer n is given by n = i M +  1. The result (2) shows that for large A the 
perturbation series for E ( p ,  A )  will take the form 

E(1, A )  = A  1/"E(A--2/n,  1) 

where the coefficients E, (which we expect to decrease rapidly with n )  are the 
perturbation coefficients for the expansion of E ( p ,  1) in powers of p. In 00 2 and 3 we 
discuss various methods of finding E(p ,  1) and the E,,, in 0 4 we discuss the calculation 
of various expectation values, and in § 5 we present the results for the two lowest 
even-parity eigenstates for M = 4, 6 and 8. The series (3) works well in the strong 
perturbation (A > 1) region where methods based on the A series are of little use. It is 
obviously more economical to give the E,, coefficients than to give a lengthy table of 
E ( p ,  1) values for selected p values. We should point out that from the series (3) we can 
obtain by partial differentiation the series for (x2) = aE/ap and ( x " )  = aE/aA. 

2. Variational and hypervirial approaches 

Although the pesturbation series in A for E(1,A) diverges rapidly, it does have 
coefficients which can in principle be calculated exactly, since the unperturbed wave- 
function (at A = 0) is a harmonic oscillator function. Bender and Wu (1968) gave the 
first 75 coefficients for the case M = 4. On the other hand, the series in p for E(p, 1) is a 
quickly converging one, but the coefficients must be calculated numerically, since the 
unperturbed wavefunction (at p r= 0) is an unknown function. For M = 4, it is possible 
to find an exact ground-state eigenfunction for a harmonic oscillator perturbed by a sum 
of x4 and x6 terms, and use that as an exact unperturbed function (Killingbeck 1978). 
Here we wish to find a method which works equally well for M = 6 and 8. 

The use of the px2 term as the perturbation has been tried before in numerical work, 
by Chan et a1 (1964) for the case M = 4. Although we proceed by a different route, we 
can comment on the relevance of the method of this paper to their work. They proceed 
by using an oscillator-type basis and a matrix diagonalisation method to obtain several 
energy levels and wavefunctions for the case p =O.  They then evaluate the matrix 
elements of px2 between these functions and use them in a new matrix calculation to get 
the levels for p > 0. They also work out the second-order energy shift due to the px2 
perturbation, apparently by using their matrix elements in a truncated sum-over-states 
calculation. In terms of the ideas of the present paper, their approach could be 
developed more compactly as follows. By finding EO and ($olx21$,Jfor the ground state 
only at p = 0, we can find the higher (401~~Nl+bo> easily from hypervirial relations; such 
relations have been known for a long time, but have been used recently in this way by, 
for example, Tipping (1976) and Killingbeck (1979). The basis states xN$0 can then be 
used to set up the Hamiltonian matrix, or to set up a Hylleraas variational principle for 
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the second-order energy, if we use the identity (Killingbeck 1979) 

( I / I x ~ ( H  - E ) x ~ ~ ~ ~ / ) = M N ( $ I x ~ + ~ - ~  I*), (4) 

which holds for any eigenfunction 1+4, with energy E ,  associated with the Hamiltonian H. 
Richardson and Blankenbecler (1979) have developed the use of hypervirial 

relations to permit the numerical calculation of energies and ( x N )  values for Hamil- 
tonians such as (1). The gist of their method is that the asymptotic form of the 
wavefunction as 1x1 -+ CO is known if M is given, and that it is the large x region which 
dominates in the calculation of ( x N )  if N is large. By starting from a large N value and 
working back to low N values wing the hypervirial relations, it is possible to obtain 
self-consistent estimates for the energy E and the ( x N ) .  It seems that a starting value 
N > 1024 is needed to get a stable result for the first five decimal places in E ;  numerical 
results are only given for M = 4 by Richardson and Blankenbecler (1979). 

Hioe et a1 (1975,1976) treated the perturbed oscillator problem for M = 4 , 6  and 8 
by using the Bargmann representation. For our Hamiltonian (1) their procedure would 
involve changing to the Hamiltonian 

M 
H = ( 1  + 2;) +A[ :( +;)I 

(for the case p = l), and noting that the functions z N  are the eigenfunctions at A = 0. 
Using the z N  as basis functions for the case A > O  leads to determinantal equations 
which must be truncated at some N value. N > 20 seems to be needed to find the energy 
to five decimal places at A = 1. For large A values, Hioe et a1 (1976) give a relation 
equivalent to (2) of this paper, and convert their problem to an equivalent weak 
perturbation problem. They were the first authors to give some perturbation 
coefficients E,, for the large A case, and for M > 4, although their calculations are not 
accurate enough to go beyond E*; we have converted their results into our units and 
have displayed them for comparison in tables 1 and 2. (Their quoted Eo value for M = 4 
is in error, probably because of a misprint.) 

Banerjee and Bhatnagar (1978) treated the M = 4 case by using a trial function 
equal to the product of a power series and a scaled ground-state oscillator wavefunc- 
tion. Their method involves large determinants; we note that the method of Secrest et 
a1 (1962) would probably work more efficiently if it also used such trial functions, rather 
than using a power series on its own. 

Table 1. Ground-state perturbation coefficients. 

M 4 6 8 

Eo 1.060 362 090 

El 0.362 022 65 

E2 -0.034 5096 

E3 0.005 195 
E4 -0.000 90 

(1.060 362 090)t 

(0.362 03) 

(-0.035) 

1.144 802 454 

0.307 920 30 
(1.144 808) 

(0.307 74) 
--0.018 5417 

(-0.0175) 

-0.000 12 
0.001 560 

1.225 820 114 

0,277 118 93 
(1.225 82) 

(0.2768) 
-0.012 6323 

(-0.0118) 
0.000 751 

-0.000 04 

t Bracketed values from Hioe et a1 (1976). 
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Table 2. Excited-state perturbation coefficients. 

M 4 6 8 

EO 7,455 697 938 9.073 084 560 

El 1.244 714 12 0.904 435 59 

E2 -0,046 6015 -0.010 2493 

(7.455 697 94)t (9.073 09) 

(1.244 73) (0.904 49) 

(0.050) (-0.01 08) 

0.000 36 0.000 11 
E3 0.000 959 -0.000 749 
E4 

i Bracketed values from Hioe et a1 (1976). 

10.244 946 977 
(10.2449) 

0.752 344 97 
(0.7526) 

(-0.0036) 
-0.003 0708 

-0.000 520 
0.000 02 

3. A direct calculation of the E. 

The most simple approach to finding the first few E, is to calculate E ( p ,  1) very 
accurately for several small p values and then extract the E, by numerical differencing. 
This approach can be used equally well for any eigenvalue, and is the one adopted here. 
The basic problem then becomes that of calculating the energy. A study of the works 
cited in the Introduction makes it quite clear that for a simple Hamiltonian such as (1) 
the use of some kind of direct numerical integration procedure is both more easy and 
more accurate than the use of large matrices. The method which we use will actually 
work just as easily for perturbations such as Ax2(1 + g x 2 ) - l ;  in a matrix approach such 
potentials require numerical integration to find the matrix elements, as well as the 
diagonalisation of large matrices (Mitra 1978). 

The method is very simple but effective, and is outlined here for a Schrodinger 
equation (with a local potential) in the form 

D2(I,(x) = [Vb)-El(I , (x)  = 4(x)(I,(x). 

s2* = h - 2 [ ( I , ( X + h ) + ( I , ( X - h ) - 2 ( I , ( x ) ] .  (7) 

(6) 

The quantity which we study is 8’4, defined by 

Here h is the small strip width to be used in the numerical integration. Use of the Taylor 
expansion and of equation (6) quickly gives us 

82(I,=4(I,+&h2D4(I,+... .  (8) 

The equation S2(I ,  = 4(I, can be treated using step-by-step integration, since 6’ of 
equation (7) has replaced the differential operator D 2 .  This method works quite well 
(Killingbeck 1977b), but can be improved by taking into account the h2  term in ( 8 )  also. 
If we think of &h2D4 as a perturbation operator, giving the difference between the true 
Hamiltonian and our finite difference version of it, then according to first-order 
perturbation theory the energy shift El caused by this perturbation is given by 
E1 = ((I,lfth2D21(I,). Here (I, is the exact eigenfunction of the correct Hamiltonian. 
However, we know that equation ( 6 )  is obeyed by that function, and can quickly show 
that El =&((I,/4’1@), provided that V is finite at the origin and that (I, goes to zero 
suitably at infinity. This result means that we can correctly allow for the energy shift 
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caused by the D4 term if we replace it by the more simple term # J ~ ,  so that our 
finite-difference equation takes the form 

S2t,b = q5t,b+&h2q52t,b. (9) 
Strictly speaking, the derivation above is supposing that q5 equals ( V -E) ,  where E is 
the exact eigenvalue of the Schrodinger equation. What we do in practice is to use a trial 
E value in (9) and integrate outwards from the origin until we reach a critical region 
where t,b either changes sign or begins to diverge upwards. Proceeding a little further, to 
some distance xo, we note the t,b value. Repeating for a slightly different trial energy E' 
we obtain two numbers, t,b(xo, E )  and t,b(xo, E') .  Linear interpolation using these CC, 
values gives us a good estimate of the energy value which would have produced a zero t,b 
value at x = xo. In practice, this interpolation procedure is surprisingly accurate, 
reducing the error by factors of up to lo3 at each step. It is quite easy to devise a 
program (for example, for a TI 58 calculator) which does the outward integration 
simultaneously for two close E values and yields the interpolated E value as output. 
Only three or four runs are needed to produce an E value accurate to lo-' or less; this E 
refers to the specific h value used in (9) and should be labelled E ( h ) .  What we need is 
the E value for the limit h + 0. The perturbation theoretic derivation of (9) implies that 
there is a series expansion of the form 

E ( h ) = E ( 0 ) + e 4 h 4 + e g h 6 + .  . . (10) 
since the q5' term in (9) was designed to suppress the h2 error term which appeared in 
the earlier method used by Killingbeck (1977b). The validity of (10) has also been 
confirmed numerically by calculations on various test potentials. To find E(O), then, we 
find E ( h )  for a few different h values and extrapolate. For the problems of this paper 
use of two h values (e.g. 0.02 and 0-04) was found to be adequate to give a final E(0)  
value accurate to nine decimal places (for the TI 58 calculator). The few results given to 
that accuracy by earlier workers (e.g. Reid 1970, Secrest et a1 1962) were reproduced 
correctly by our method. Finding E ( @ ,  1) values to this accuracy for a selection of small 
p values (e.g. 0, &0.05, k0.1) makes it possible to extract stable estimates of the 
low-order perturbation coefficients, and these are shown in table 1. (To treat the first 
excited state, the wavefunction $ is allowed to have one node before the critical region 
is reached, but otherwise the procedure is the same as that for the ground state.) 

4. Expectation value calculations 

It is traditionally regarded as much harder to find the accurate wavefunction than to find 
the eigenvalue E. However, the wavefunction is most often used to calculate expec- 
tation values, and it is possible to find these quite accurately by the method of 8 3.  There 
are two main ways in which to find expectation values: 

(a) Direct integration. The integrals of $'f(x) and 4' are constructed as equation (9) 
is integrated outwards, and the expectation value ( f ( x ) )  found by taking the ratio of the 
integrals. $ ( O )  can be arbitrarily set equal to 1 to start off the integrations. For finite h, 
of course, the result is not the required ( f ( x ) ) ,  but the relation 

( f b ) ) h  = ( f ( X ) ) o + f 2 h 2 + f 4 h 4 + - .  (11) 
holds. Accordingly, using two h values to find the energy E permits us simultaneously 
to work out ( f ( x ) )  by evaluating the appropriate integrals for any function f ( x ) .  There is 
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one subtlety involved in the accurate evaluation of We want to find ( f ( ~ ) ) ~  for 
the correct E ( h )  value, whereas in practice two trial values are used for E. When E is 
accurately known, so that the two trial E values differ by, say, the calculated ( f ( x ) )  
differ by a similarly small amount, provided that we take their values at x = Xo. Here Xo 
is the x value at which 9 has the node, and is less than the xo used in the energy 
interpolation. The divergent region of t+h (with x >Xo) gives increasing contributions 
which ‘spoil’ the integrals; the true wavefunction would be almost zero in that region. 
The numerical results indicate that this procedure yields values of ( x ” )  for the 
eigenfunctions of the Hamiltonian (1) which are accurate to much better than 1 part in 
lo6. By modifying an argument given by Froman (1978), we can express the value of 
the squared wavefunction at x = 0 in terms of an expectation value of the modulus of the 
derivative of the potential 

(12) 
(b) The eigenvalue approach. This approach uses the Hellmann-Feynman theorem 
(equivalent to first-order perturbation theory) and involves accurate computation of the 
energy eigenvalue for the Hamiltonian (1) with the small perturbing term r t a f ( x )  
included. a is small (typically lop3) and the expectation value ( f ( x ) )  then follows by 
differencing: 

(ID VI) = [E - v(0)l*2(0). 

E(+a) - E ( - a )  = 2a(f(x)). (13) 
This approach has the beautiful feature that it reduces the calculation of expectation 
values to the calculation of energy values, which we can do accurately, without the need 
for producing the detailed wavefunction as an intermediate product. It would work for 
any computational method which gives accurate energy values, but is particularly useful 
here. If the approach is used in a matrix calculation it yields nothing new; the use of (13) 
then yields exactly what would be found by directly calculating ( f ( x ) )  using the 
approximate eigenvector associated with the approximate eigenvalue. The present 
calculation uses px2 as a perturbation in the Hamiltonian (1) (with A = 1); the 
first-order energy coefficient is thus directly equal to the expectation value ( x 2 )  for the 
unperturbed (p = 0) wavefunction. 

To ensure that the direct integration method of (a) is carried out using a reliable 
wavefunction we introduced the function F ( x ) ,  defined by the relation 

(14) + ( x  + h )  = [1+ h2F(x) ]+(x ) .  

F ( x )  = F(x - h)[l + h2F(x - 

Inserting this definition into (9) leads to the recurrence relation 

(15) 
with (b = V -E. Equation (15) allows F to be found very accurately at each x ,  and 9 can 
be constructed from it using (14). This approach gives less cumulative rounding error 
than the method which uses qb(x*hh) and + ( x )  directly in the recurrence relation 
resulting when (7) is substituted in (9). This has been confirmed in various test 
calculations but can be seen in principle by noting that the x-dependent term h2F is 
typically small compared with unity and so is ‘masked’ by the unity term if the function 
1 + h2F is calculated directly at each step. The obvious internal check on the methods 
of this section is to compare the values of El  = ( x 2 )  as obtained by the two methods. The 
results at p = 0 for M = 4, 6 and 8 showed that the (x2) values from the two methods 
agree to within lo-’ for both the states considered. Either of the methods would thus 
suffice to give (x”) values to be used in the kind of calculation outlined in § 2. 

1 2 2  + (b + n h  (b 
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5. Results and discussion 

Tables 1 and 2 show the results for the E,, for the first two even-parity states, as 
obtained by numerical differencing from the eigenvalues at CL = 0, zt0.05, ztO.1, zt0-2. 
The error (E - S4), where E is the true energy and S4 the sum of the series (3) up to the 
E4 term, is somewhat less than the size of the fourth-order term for = 1 and A > 1, and 
S4 gives the energy to sufficient accuracy for most purposes. The resulting eigenvalue 
estimates for M = 6 or 8 are much more accurate than those of Biswas et al (1973). In 
the case M = 2 an analytic solution shows that every eigenvalue of the Hamiltonian 
varies as (A +w)l” ,  so that the perturbation coefficients E, alternate in sign. The 
excited state results show, however, that for M = 6 or 8 the signs of both E2 and E3 are 
negative, and suggest that for M -- 5 the value of E3 for the first even-parity excited 
state passes through a zero when considered as a function of M. 

One feature of the methods of 39 3 and 4 should be particularly stressed. In the 
numerical treatment of the Schrodinger equation it is always easier to get an accurate 
energy value than to obtain an accurate eigenfunction. Furthermore, the storage of the 
wavefunction in numerical form takes up a large amount of storage capacity. In 
practice, however, the wavefunction is not often used in isolation, but is combined with 
operators to form expectation values. The work of this paper shows how (for one- 
particle problems) much of the theory can be directly reduced to involve only eigen- 
value calculations, which are the easiest ones to carry out. The method of § 4(a) does 
allow the extraction of 4 if desired (for x values between the origin and the critical 
region), but most of the traditional calculations of quantum mechanics could be 
performed without direct knowledge of $. 

When comparing the numerical results of this work with those of previous authors it 
is important to note that the majority of works quote tables of E(A) for selected A values 
and for p = 1. Since the results are usually quoted to less than nine decimal places, the 
method of § 3 is more accurate (and simpler) in almost all cases; even the few exceptions 
would be removed if we used double-precision computation (as they do). The series of 
equation (3) will permit more speedy estimation of E ( p ,  A )  at variable values of the 
parameters, and given this estimated E(p ,  A )  we can refine it using the method of § 3. 
This refining process is not possible for most of the other methods, except that of Secrest 
et a1 (1962); our method, incidentally, will provide an x o  value which will quickly define 
the basic region ( x  < x o )  to be used in their method. The individual Pad6 approximants 
of Simon (1970) for M = 4 are quoted to twelve figures, but when we attempt to derive 
E(1, 1) from them as a limit it is only found to four decimal places. The result is 
E ( 1 , l )  = 1.3923, whereas Sq from our perturbation series is 1.392 17, which becomes 
1.392 30 if we continue the series as a geometric series. Table 3 compares some S4 

Table 3. Specimen E(1, A )  values for M = 6 and 8. 

A Eo(6) Ez(6) Eo(8) Ez(8) 

1 1.435 6246t 9.966 622 1.490- 1 10.993 -4 
(1.435 6211)$ (9.966 6318) (1.491 0177) (10.993 7211) 

(2.205 7233) (16.641 2182) (2.114 5446) (16.711 0217) 
10 2.205 7232 16.64 1 21 2.1 15 -22 16.707 - 15 

~~ ~ 

t From Biswas et al (1973). 
t S4 value. 



56 J Killingbeck 

values from our series with the results of Biswas et a1 (1973). With so few terms of the 
series it is difficult to say anything about the radius of convergence. It seems to be about 
5 if we look at the ratios of successive coefficients (for the M = 4 ground state), but the 
comments of Banerjee and Bhatnagar (1978) suggest that we might expect trouble at 
the p value (-3.3) at which there arise four classical turning points in the classical 
motion. (For p < 0 the potential has two wells in it.) In a preliminary investigation of 
this point we have calculated E ( p ,  1) in the region around p = -3.3, but cannot find any 
apparent discontinuity in E ( p ,  1) or its low-order derivatives. 
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